Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells
نویسندگان
چکیده
One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect.
منابع مشابه
Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death
Cellular DNA is organized into chromosomes and capped by a unique nucleoprotein structure, the telomere. Both oxidative stress and telomere shortening/dysfunction cause aging-related degenerative pathologies and increase cancer risk. However, a direct connection between oxidative damage to telomeric DNA, comprising <1% of the genome, and telomere dysfunction has not been established. By fusing ...
متن کاملDNA damage in dental pulp mesenchymal stem cells: An in vitro study
The aim of this study was to evaluate the potential use of a DNA comet assay, DNA fragmentation fluorimetric assay and reactive oxygen species levels as potential biomarkers of genome conditions of dental pulp stem cells (DPSCs) isolated from dog canine teeth. Mesenchymal stem cells were isolated from the dental pulp collected from dog teeth. The results obtained suggest the ideal moment for cl...
متن کاملEffect of curcumin on rat sperm morphology after the freeze-thawing process
Reactive oxygen species (ROS) generation, induced by the cryopreservation process, can be responsible for mammalian sperm damage. Curcumin is known as an effective antioxidant against oxidative stress. The aim of this study was to evaluate the effects of curcumin on sperm count, motility and viability, semen total antioxidant capacity and DNA integrity of rat spermatozoa during semen freeze-tha...
متن کاملA journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3
Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...
متن کاملOxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2
The ends of linear chromosomes are capped by protein-DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased ...
متن کامل